Big data ejemplos y definición

Big data es un término amplio que designa conjuntos de datos tan grandes o complejos que las aplicaciones tradicionales de tratamiento de datos resultan inadecuadas. Los big data pueden incluir cualquier tipo de información, tanto estructurada como no estructurada.

Big data ejemplos y definición

Conjuntos de datos grandes

Big data es un t√©rmino amplio que designa conjuntos de datos tan grandes o complejos que las aplicaciones tradicionales de procesamiento de datos resultan inadecuadas. El alcance de los big data puede ser de cualquier tama√Īo, desde terabytes a petabytes (1 bill√≥n de bytes) y m√°s all√°. En general, el alcance de los big data incluye tanto tipos de informaci√≥n estructurada como no estructurada.

Big data se refiere a las enormes cantidades de informaci√≥n que generan Internet, las redes sociales y otras fuentes. Big data se refiere a conjuntos de datos cuyo tama√Īo supera la capacidad de las herramientas tradicionales de gesti√≥n de bases de datos para capturarlos, almacenarlos, gestionarlos y analizarlos eficazmente mediante sistemas est√°ndar de gesti√≥n de bases de datos relacionales (RDBMS).

Se calcula que el 98% de los datos del mundo se han creado s√≥lo en los dos √ļltimos a√Īos.

Los datos crecen exponencialmente. De hecho, se calcula que el 98% de los datos del mundo se han creado s√≥lo en los dos √ļltimos a√Īos. Y si se pregunta qu√© ha pasado con el 2% restante, bueno, tampoco lo sabemos.

¬ŅC√≥mo podemos hacer frente a este crecimiento exponencial? Pues bien, necesitamos un nuevo modelo de almacenamiento de datos que nos permita almacenar toda nuestra informaci√≥n y luego averiguar qu√© hacer con ella m√°s tarde (o no).

Esta es la raz√≥n por la que la mayor√≠a de las organizaciones est√°n utilizando servicios de almacenamiento en la nube como Amazon Web Services (AWS), Google Cloud Platform (GCP) o Microsoft Azure, en lugar de construir su propia infraestructura desde cero o utilizar bases de datos relacionales tradicionales como Oracle DBMS o Microsoft SQL Server DBMS, que requieren el pago de costosas licencias cada a√Īo s√≥lo para poder seguir almacenando todos esos gigabytes y gigabytes de activos digitales.

Las cuatro V de los big data

Las cuatro V de los macrodatos son volumen, variedad, velocidad y veracidad.

El volumen se refiere al tama√Īo de los datos que procesa su empresa. La variedad se refiere a todos sus tipos: estructurados (como hojas de c√°lculo) y no estructurados (como im√°genes). La velocidad se refiere a la rapidez con la que cambia la informaci√≥n a lo largo del tiempo: si se trata de algo como las cifras de ventas de una tienda online cada hora aproximadamente, se necesita un sistema que pueda gestionar esos cambios con la suficiente rapidez para que no afecten demasiado a las decisiones de la empresa.

Por √ļltimo, est√° la veracidad, es decir, la exactitud: ¬Ņhasta qu√© punto es fiable la informaci√≥n? Si procede de una fuente externa, como redes sociales como Twitter o Facebook, donde cualquiera puede publicar cualquier cosa en cualquier momento sin verificaci√≥n previa, quiz√° no sea tan fiable.

Datos estructurados y no estructurados.

Los macro datos pueden incluir cualquier tipo de información, tanto estructurada como no estructurada.

Ejemplos de datos estructurados: n√ļmeros de la seguridad social, n√ļmeros de tarjetas de cr√©dito y n√ļmeros de tel√©fono.

Ejemplos de datos no estructurados: páginas web, correos electrónicos, tweets y otros contenidos de medios sociales.

La tecnología big data puede utilizarse para analizar el genoma humano y encontrar marcadores genéticos de enfermedades.

La tecnología de macrodatos puede utilizarse para analizar el genoma humano y encontrar marcadores genéticos de enfermedades. La secuenciación del ADN es un ejemplo de tecnología de macrodatos que se ha utilizado en la investigación médica desde sus inicios a principios de la década de 2000. Al identificar genes individuales y sus variaciones, los investigadores pueden identificar factores genéticos que contribuyen a enfermedades como el cáncer o la diabetes.

Los estudios de asociaci√≥n de todo el genoma (GWAS) emplean una t√©cnica denominada microarrays que permite a los cient√≠ficos analizar miles de muestras a la vez en busca de patrones espec√≠ficos en los niveles de expresi√≥n g√©nica. Este proceso les permite identificar variantes gen√©ticas asociadas a enfermedades como el Alzheimer o la esquizofrenia; sin embargo, la mayor√≠a de los resultados de los GWAS siguen sin ser concluyentes debido en gran parte a que se basan en muestras de peque√Īo tama√Īo (en muchos casos, menos de 100 individuos).

A medida que aumente el n√ļmero de personas que participen en estos estudios, y sobre todo si esos participantes dan su consentimiento para la realizaci√≥n de pruebas adicionales, deber√≠amos esperar un aumento de las tasas de precisi√≥n junto con una mayor comprensi√≥n sobre c√≥mo interact√ļan los factores ambientales espec√≠ficos con nuestros genes durante las etapas de desarrollo m√°s adelante en el camino de la vida.

Usos para Big Data

Hoy en día hay muchos usos para los Big Data que están cambiando nuestra forma de vivir y trabajar.

Los macro datos pueden utilizarse para mejorar la atenci√≥n sanitaria, el servicio al cliente y la educaci√≥n. Tambi√©n puede ayudar a los organismos de seguridad p√ļblica a proteger mejor a sus comunidades y a las empresas a acceder a nuevas oportunidades mediante el uso de big data para mejorar los procesos empresariales.

Sanidad: Los médicos y enfermeros utilizan los historiales de los pacientes para tomar decisiones sobre los planes de tratamiento, pero con tanta información disponible sobre cada paciente les resulta difícil encontrar lo que necesitan cuando lo necesitan. Con las herramientas de análisis de big data, los médicos tendrán acceso a un abanico de información sobre el historial médico de sus pacientes más amplio que nunca, incluida información sobre si un medicamento ha causado una reacción adversa o si hay otros medicamentos que puedan interactuar negativamente entre sí (como los fármacos para la tensión arterial). Esto podría salvar vidas porque los médicos sabrían inmediatamente qué tratamientos funcionarían mejor basándose en experiencias anteriores, en lugar de perder el tiempo probando distintas combinaciones hasta que algo funcione lo suficientemente bien.

El Big Data tiene muchos usos hoy en día de los que quizá no te des cuenta

Los macro datos se utilizan de muchas formas distintas para analizar el comportamiento humano. Puede utilizarse para analizar c√≥mo utilizan las personas sus dispositivos m√≥viles, c√≥mo interact√ļan entre s√≠ e incluso c√≥mo gastan su dinero.

He aquí algunos ejemplos de aplicaciones de Big Data:

  • Analizar las redes sociales para averiguar lo que ocurre en el mundo que te rodea y de lo que quiz√° no seas consciente (por ejemplo, tendencias en moda o tecnolog√≠a).
  • Utilizar sensores y c√°maras colocados en las ciudades para controlar el tr√°fico, de modo que los gobiernos puedan planificar mejor las obras o mejorar el transporte p√ļblico.

Conclusión

Big data es un término que se utiliza para describir las grandes cantidades de datos que podemos recopilar, analizar y utilizar en nuestra vida cotidiana. Esta información puede utilizarse para muchos fines distintos, como encontrar marcadores genéticos de enfermedades o analizar genomas humanos para comprender mejor su funcionamiento. Es importante recordar que también hay consecuencias negativas asociadas a esta tecnología, como la preocupación por la privacidad de las personas que tienen acceso a su información personal.

Dr369

El Dr369 es un especialista en sistemas informáticos, destaca por su pasión por la tecnología y su contribución en comunidades online, enfocándose en seguridad y eficiencia.
Botón volver arriba
Esta web utiliza cookies propias y de terceros para su correcto funcionamiento y para fines analíticos y para mostrarte publicidad relacionada con sus preferencias en base a un perfil elaborado a partir de tus hábitos de navegación. Contiene enlaces a sitios web de terceros con políticas de privacidad ajenas que podrás aceptar o no cuando accedas a ellos. Al hacer clic en el botón Aceptar, acepta el uso de estas tecnologías y el procesamiento de tus datos para estos propósitos. Más información
Privacidad